Rational Approximation to the Exponential Function with Complex Conjugate Interpolation Points
نویسندگان
چکیده
منابع مشابه
Rational Approximation to the Exponential Function with Complex Conjugate Interpolation Points
In this paper, we study asymptotic properties of rational functions that interpolate the exponential function. The interpolation is performed with respect to a triangular scheme of complex conjugate points lying in bounded rectangular domains included in the horizontal strip |Im z|<2?. Moreover, the height of these domains cannot exceed some upper bound which depends on the type of rational fun...
متن کاملRational Interpolation of the Exponential Function
Let m, n be nonnegative integers and a<m+n) be a set of m + n + 1 real in~lation points (not necessarily distinct). Let Rm.n = P m.n / Qm.n be the unique rational function with degPm.n ::; m, deg Qm,n :$n, that in~lates e'" in the points of a<nr+n). Ifm = mv, n = nv with mv + nv --+ 00, and mv /nv --+ A as v --+ 00, and the sets a<nr+n) are uniformly bounded, we show that Pm.n(z) --+ ~/(l+)'), ...
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملMatrix Rational Interpolation with Poles as Interpolation Points
In this paper, we show the equivalence between matrix rational interpolation problems with poles as interpolation points and no-pole problems. This equivalence provides an effective method for computing matrix rational interpolants having poles as interpolation points. However, this equivalence is only valid in those cases where enough pole information is known. It is an open problem on how one...
متن کاملRational Interpolation at Chebyshev points
The Lanczos method and its variants can be used to solve eeciently the rational interpolation problem. In this paper we present a suitable fast modiication of a general look-ahed version of the Lanczos process in order to deal with polynomials expressed in the Chebyshev orthogonal basis. The proposed approach is particularly suited for rational interpolation at Chebyshev points, that is, at the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2001
ISSN: 0021-9045
DOI: 10.1006/jath.2001.3581